crowdkit.aggregation.texts.text_rasa.TextRASA
| Source code
TextRASA( self, encoder: Callable[[str], ...], n_iter: int = 100, tol: float = 1e-05, alpha: float = 0.05)
RASA on text embeddings.
Given a sentence encoder, encodes texts provided by workers and runs the RASA algorithm for embedding aggregation.
Parameters | Type | Description |
---|---|---|
encoder | Callable[[str], ...] | A callable that takes a text and returns a NumPy array containing the corresponding embedding. |
n_iter | int | A number of RASA iterations. |
alpha | float | Confidence level of chi-squared distribution quantiles in beta parameter formula. |
Examples:
We suggest to use sentence encoders provided by Sentence Transformers.
from crowdkit.datasets import load_datasetfrom crowdkit.aggregation import TextRASAfrom sentence_transformers import SentenceTransformerencoder = SentenceTransformer('all-mpnet-base-v2')hrrasa = TextRASA(encoder=encoder.encode)df, gt = load_dataset('crowdspeech-test-clean')df['text'] = df['text'].apply(lambda s: s.lower())result = hrrasa.fit_predict(df)
Method | Description |
---|---|
fit | Fit the model. |
fit_predict | Fit the model and return aggregated texts. |
fit_predict_scores | Fit the model and return scores. |